Checklist Cover

AWS D1.1 Welding Procedure and Welder Qualification Checklists

Checklist for using AWS D1.1 to qualify welding procedures, welders and welding operators.
Powered by Kit
Search
3 Effective Ways to Reduce Welding Rework

Rework in welding is a massive productivity killer—tripling labor, wasting material, and slowing down production. While there are many causes, three simple fixes can drastically reduce rework: stop overwelding, use properly qualified welding procedures, and maintain your equipment. In this post, we dive into how these small changes yield big results—lowering costs, improving quality, and increasing efficiency across the shop. If you're tired of grinding out the same welds twice, this is the post for you.

Who is responsible for determining weld size?

In many fabrication shops, welders are often left to determine weld sizes due to a lack of clear specifications from design engineers or customers. This common practice frequently leads to overwelding, where fillet welds are significantly larger than necessary, wasting material, gas, and labor. Beyond the increased cost, overwelding also introduces quality issues like distortion and slag inclusions, paradoxically causing more failures than undersized welds. While structural welding codes provide minimum weld sizes to ensure adequate heat input, these often appear "too small" to welders, leading them to apply excessive weldment.