Welding Guide Subscription Form
Welding Guide

Get your FREE guide on what every welding engineer must know

Subscribe to get our latest content by email.

We won't send you spam. Unsubscribe at any time.
Search
8 Ways to Increase Welder Efficiency

Skilled welders are a valuable asset—but too often, their time is wasted on non-welding tasks. In this post, we break down 8 proven ways to increase welder efficiency and get more value from your team. From smarter fixturing and better equipment maintenance to choosing the right welding process and consumables, these practical tips will help your shop boost productivity without burning out your welders. If you’re serious about improving throughput and lowering costs, this article is a must-read.

3 Effective Ways to Reduce Welding Rework

Rework in welding is a massive productivity killer—tripling labor, wasting material, and slowing down production. While there are many causes, three simple fixes can drastically reduce rework: stop overwelding, use properly qualified welding procedures, and maintain your equipment. In this post, we dive into how these small changes yield big results—lowering costs, improving quality, and increasing efficiency across the shop. If you're tired of grinding out the same welds twice, this is the post for you.

How to Control Welding Fumes

Welding fumes pose serious health risks—not just to welders, but to everyone in the shop. This post walks you through the correct order of steps for reducing and controlling fume exposure, starting with engineering controls and ending with PPE as a last resort. You’ll learn how to effectively use substitution, isolation, and ventilation, as well as practical safe work practices that can dramatically reduce exposure. If your shop hasn’t taken a strategic approach to fume control, this article is an essential read.

How to write AWS D1.1 Prequalified Welding Procedure Specifications

The AWS D1.1 Structural Welding Code for Steel allows fabricators to use prequalified welding procedures (WPSs), saving significant time and money by exempting them from testing. This post outlines an 8-step guide to writing a prequalified WPS, covering selecting approved base metals, weld joints, welding processes, filler metals, shielding gases, and determining preheat, interpass, and post-weld heat treatment. It emphasizes that anyone who understands the code can create these essential documents for quality and productivity.

6 Challenges When Increasing Deposition Rates

Want to boost welding productivity? Increasing your deposition rate is one of the most effective ways—but only if done right. This post explains the difference between melt-off and deposition rate, how higher deposition leads to faster travel speeds (and real time savings), and the common mistakes that sabotage these gains. Learn how to avoid costly errors, why simply turning up the amps isn’t enough, and how training and proper welding procedures can unlock major efficiency improvements in your shop.

The Most Dangerous Weld Defect

While cracks are often considered the "worst" weld defect, the most dangerous ones are those that go undetected and are put into service. Many common discontinuities like lack of fusion, internal porosity, or even small surface cracks can be missed if quality control standards are inadequate or if inspections are timed improperly. For example, hydrogen-induced cracking can appear up to 48 hours after welding, and incorrect shielding gas for stainless steel, though visually appealing, can lead to costly premature corrosion or sensitization in service. Effective quality control, including qualified procedures, trained welders, and appropriate inspection timing and methods, is essential to prevent these hidden, catastrophic failures.